Return stack, DOCOL
authorrich <rich>
Sat, 8 Sep 2007 12:46:16 +0000 (12:46 +0000)
committerrich <rich>
Sat, 8 Sep 2007 12:46:16 +0000 (12:46 +0000)
jonesforth.S

index 4d043aa..40be7d7 100644 (file)
 
        Here is another "Why FORTH?" essay: http://www.jwdt.com/~paysan/why-forth.html
 
 
        Here is another "Why FORTH?" essay: http://www.jwdt.com/~paysan/why-forth.html
 
+       ACKNOWLEDGEMENTS ----------------------------------------------------------------------
+
+       This code draws heavily on the design of LINA FORTH (http://home.hccnet.nl/a.w.m.van.der.horst/lina.html)
+       by Albert van der Horst.  Any similarities in the code are probably not accidental.
+
        SETTING UP ----------------------------------------------------------------------
 
        Let's get a few housekeeping things out of the way.  Firstly because I need to draw lots of
        SETTING UP ----------------------------------------------------------------------
 
        Let's get a few housekeeping things out of the way.  Firstly because I need to draw lots of
        1C 00 00 00             the CALL prefix.
        2C 00 00 00
 
        1C 00 00 00             the CALL prefix.
        2C 00 00 00
 
+       [Historical note: If the execution model that FORTH uses looks strange from the following
+       paragraphs, then it was motivated entirely by the need to save memory on early computers.
+       This code compression isn't so important now when our machines have more memory in their L1
+       caches than those early computers had in total, but the execution model still has some
+       useful properties].
+
        Of course this code won't run directly any more.  Instead we need to write an interpreter
        which takes each pair of bytes and calls it.
 
        Of course this code won't run directly any more.  Instead we need to write an interpreter
        which takes each pair of bytes and calls it.
 
        (3) jumps to the indirect %eax                  jumps to the address in the codeword of +,
                                                        ie. the assembly code to implement +
 
        (3) jumps to the indirect %eax                  jumps to the address in the codeword of +,
                                                        ie. the assembly code to implement +
 
+               +------------------+
+               | codeword         |
+               +------------------+
+               | addr of DOUBLE  ---------------> +------------------+
+               +------------------+               | codeword         |
+               | addr of DOUBLE   |               +------------------+
+               +------------------+               | addr of DUP   --------------> +------------------+
+               | addr of EXIT     |               +------------------+            | codeword      -------+
+               +------------------+               | addr of +     --------+       +------------------+   |
+                                                  +------------------+    |       | assembly to    <-----+
+                                          %esi -> | addr of EXIT     |    |       | implement DUP    |
+                                                  +------------------+    |       |    ..            |
+                                                                          |       |    ..            |
+                                                                          |       | NEXT             |
+                                                                          |       +------------------+
+                                                                          |
+                                                                          +-----> +------------------+
+                                                                                  | codeword      -------+
+                                                                                  +------------------+   |
+                                                                       now we're  | assembly to   <------+
+                                                                       executing  | implement +      |
+                                                                       this       |    ..            |
+                                                                       function   |    ..            |
+                                                                                  | NEXT             |
+                                                                                  +------------------+
+
+       So I hope that I've convinced you that NEXT does roughly what you'd expect.  This is
+       indirect threaded code.
+
+       I've glossed over four things.  I wonder if you can guess without reading on what they are?
+
+       .
+       .
+       .
+
+       My list of four things are: (1) What does "EXIT" do?  (2) which is related to (1) is how do
+       you call into a function, ie. how does %esi start off pointing at part of QUADRUPLE, but
+       then point at part of DOUBLE.  (3) What goes in the codeword for the words which are written
+       in FORTH?  (4) How do you compile a function which does anything except call other functions
+       ie. a function which contains a number like : DOUBLE 2 * ; ?
 
 
+       THE INTERPRETER AND RETURN STACK ------------------------------------------------------------
 
 
+       Going at these in no particular order, let's talk about issues (3) and (2), the interpreter
+       and the return stack.
 
 
+       Words which are defined in FORTH need a codeword which points to a little bit of code to
+       give them a "helping hand" in life.  They don't need much, but they do need what is known
+       as an "interpreter", although it doesn't really "interpret" in the same way that, say,
+       Java bytecode used to be interpreted (ie. slowly).  This interpreter just sets up a few
+       machine registers so that the word can then execute at full speed using the indirect
+       threaded model above.
 
 
+       One of the things that needs to happen when QUADRUPLE calls DOUBLE is that we save the old
+       %esi ("instruction pointer") and create a new one pointing to the first word in DOUBLE.
+       Because we will need to restore the old %esi at the end of DOUBLE (this is, after all, like
+       a function call), we will need a stack to store these "return addresses" (old values of %esi).
 
 
+       As you will have read, when reading the background documentation, FORTH has two stacks,
+       an ordinary stack for parameters, and a return stack which is a bit more mysterious.  But
+       our return stack is just the stack I talked about in the previous paragraph, used to save
+       %esi when calling from a FORTH word into another FORTH word.
+
+       In this FORTH, we are using the normal stack pointer (%esp) for the parameter stack.
+       We will use the i386's "other" stack pointer (%ebp, usually called the "frame pointer")
+       for our return stack.
+
+       I've got two macros which just wrap up the details of using %ebp for the return stack:
+*/
 
 /* Macros to deal with the return stack. */
        .macro PUSHRSP reg
 
 /* Macros to deal with the return stack. */
        .macro PUSHRSP reg
        lea 4(%ebp),%ebp
        .endm
 
        lea 4(%ebp),%ebp
        .endm
 
+/*
+       And with that we can now talk about the interpreter.
+
+       In FORTH the interpreter function is often called DOCOL (I think it means "DO COLON" because
+       all FORTH definitions start with a colon, as in : DOUBLE DUP + ;
+
+       The "interpreter" (it's not really "interpreting") just needs to push the old %esi on the
+       stack and set %esi to the first word in the definition.  Remember that we jumped to the
+       function using JMP *(%eax)?  Well a consequence of that is that conveniently %eax contains
+       the address of this codeword, so just by adding 4 to it we get the address of the first
+       data word.  Finally after setting up %esi, it just does NEXT which causes that first word
+       to run.
+*/
+
+/* DOCOL - the interpreter! */
+       .text
+       .align 4
+DOCOL:
+       PUSHRSP %esi            // push %esi on to the return stack
+       addl $4,%eax            // %eax points to codeword, so make
+       movl %eax,%esi          // %esi point to first data word
+       NEXT
+
+/*
+       Just to make this absolutely clear, let's see how DOCOL works when jumping from QUADRUPLE
+       into DOUBLE:
+
+               QUADRUPLE:
+               +------------------+
+               | codeword         |
+               +------------------+               DOUBLE:
+               | addr of DOUBLE  ---------------> +------------------+
+               +------------------+       %eax -> | addr of DOCOL    |
+       %esi -> | addr of DOUBLE   |               +------------------+
+               +------------------+               | addr of DUP   -------------->
+               | addr of EXIT     |               +------------------+
+               +------------------+               | etc.             |
+
+       First, the call to DOUBLE causes DOCOL (the codeword of DOUBLE).  DOCOL does this:  It
+       pushes the old %esi on the return stack.  %eax points to the codeword of DOUBLE, so we
+       just add 4 on to it to get our new %esi:
+
+               QUADRUPLE:
+               +------------------+
+               | codeword         |
+               +------------------+               DOUBLE:
+               | addr of DOUBLE  ---------------> +------------------+
+               +------------------+               | addr of DOCOL    |
+               | addr of DOUBLE   |               +------------------+
+               +------------------+       %esi -> | addr of DUP   -------------->
+               | addr of EXIT     |               +------------------+
+               +------------------+               | etc.             |
+
+       Then we do NEXT, and because of the magic of threaded code that increments %esi again
+       and calls DUP.
+
+       Well, it seems to work.
+
+       One minor point here.  Because DOCOL is the first bit of assembly actually to be defined
+       in this file (the others were just macros), and because I usually compile this code with the
+       text segment starting at address 0, DOCOL has address 0.  So if you are disassembling the
+       code and see a word with a codeword of 0, you will immediately know that the word is
+       written in FORTH (it's not an assembler primitive) and so uses DOCOL as the interpreter.
+*/
+
+
+
+
 /* ELF entry point. */
        .text
        .globl _start
 /* ELF entry point. */
        .text
        .globl _start
@@ -387,15 +530,6 @@ _start:
 cold_start:                    // High-level code without a codeword.
        .int COLD
 
 cold_start:                    // High-level code without a codeword.
        .int COLD
 
-/* DOCOL - the interpreter! */
-       .text
-       .align 4
-DOCOL:
-       PUSHRSP %esi            // push %esi on to the return stack
-       addl $4,%eax            // %eax points to codeword, so make
-       movl %eax,%esi          // %esi point to first data word
-       NEXT
-
 /*----------------------------------------------------------------------
  * Fixed sized buffers for everything.
  */
 /*----------------------------------------------------------------------
  * Fixed sized buffers for everything.
  */