inspect: Abstract the wrapper that sets up Augeas.
[libguestfs.git] / src / guestfs.pod
index 603fe20..8370982 100644 (file)
@@ -404,7 +404,8 @@ to their advantage.
 A secure alternative is to use libguestfs to install a "firstboot"
 script (a script which runs when the guest next boots normally), and
 to have this script run the commands you want in the normal context of
 A secure alternative is to use libguestfs to install a "firstboot"
 script (a script which runs when the guest next boots normally), and
 to have this script run the commands you want in the normal context of
-the running guest, network security and so on.
+the running guest, network security and so on.  For information about
+other security issues, see L</SECURITY>.
 
 =back
 
 
 =back
 
@@ -575,7 +576,9 @@ inspection and caches the results in the guest handle.  Subsequent
 calls to C<guestfs_inspect_get_*> return this cached information, but
 I<do not> re-read the disks.  If you change the content of the guest
 disks, you can redo inspection by calling L</guestfs_inspect_os>
 calls to C<guestfs_inspect_get_*> return this cached information, but
 I<do not> re-read the disks.  If you change the content of the guest
 disks, you can redo inspection by calling L</guestfs_inspect_os>
-again.
+again.  (L</guestfs_inspect_list_applications> works a little
+differently from the other calls and does read the disks.  See
+documentation for that function for details).
 
 =head2 SPECIAL CONSIDERATIONS FOR WINDOWS GUESTS
 
 
 =head2 SPECIAL CONSIDERATIONS FOR WINDOWS GUESTS
 
@@ -770,20 +773,6 @@ The error message you get from this is also a little obscure.
 This could be fixed in the generator by specially marking parameters
 and return values which take bytes or other units.
 
 This could be fixed in the generator by specially marking parameters
 and return values which take bytes or other units.
 
-=item Library should return errno with error messages.
-
-It would be a nice-to-have to be able to get the original value of
-'errno' from inside the appliance along error paths (where set).
-Currently L<guestmount(1)> goes through hoops to try to reverse the
-error message string into an errno, see the function error() in
-fuse/guestmount.c.
-
-In libguestfs 1.5.4, the protocol was changed so that the
-Linux errno is sent back from the daemon.
-
-In libguestfs 1.7.1, the protocol was changed again to send the
-errno back as a string (for portability between differing Un*xes).
-
 =item Ambiguity between devices and paths
 
 There is a subtle ambiguity in the API between a device name
 =item Ambiguity between devices and paths
 
 There is a subtle ambiguity in the API between a device name
@@ -855,6 +844,323 @@ libguestfs might end up being written out to the swap partition.  If
 this is a concern, scrub the swap partition or don't use libguestfs on
 encrypted devices.
 
 this is a concern, scrub the swap partition or don't use libguestfs on
 encrypted devices.
 
+=head2 MULTIPLE HANDLES AND MULTIPLE THREADS
+
+All high-level libguestfs actions are synchronous.  If you want
+to use libguestfs asynchronously then you must create a thread.
+
+Only use the handle from a single thread.  Either use the handle
+exclusively from one thread, or provide your own mutex so that two
+threads cannot issue calls on the same handle at the same time.
+
+See the graphical program guestfs-browser for one possible
+architecture for multithreaded programs using libvirt and libguestfs.
+
+=head2 PATH
+
+Libguestfs needs a kernel and initrd.img, which it finds by looking
+along an internal path.
+
+By default it looks for these in the directory C<$libdir/guestfs>
+(eg. C</usr/local/lib/guestfs> or C</usr/lib64/guestfs>).
+
+Use L</guestfs_set_path> or set the environment variable
+L</LIBGUESTFS_PATH> to change the directories that libguestfs will
+search in.  The value is a colon-separated list of paths.  The current
+directory is I<not> searched unless the path contains an empty element
+or C<.>.  For example C<LIBGUESTFS_PATH=:/usr/lib/guestfs> would
+search the current directory and then C</usr/lib/guestfs>.
+
+=head2 QEMU WRAPPERS
+
+If you want to compile your own qemu, run qemu from a non-standard
+location, or pass extra arguments to qemu, then you can write a
+shell-script wrapper around qemu.
+
+There is one important rule to remember: you I<must C<exec qemu>> as
+the last command in the shell script (so that qemu replaces the shell
+and becomes the direct child of the libguestfs-using program).  If you
+don't do this, then the qemu process won't be cleaned up correctly.
+
+Here is an example of a wrapper, where I have built my own copy of
+qemu from source:
+
+ #!/bin/sh -
+ qemudir=/home/rjones/d/qemu
+ exec $qemudir/x86_64-softmmu/qemu-system-x86_64 -L $qemudir/pc-bios "$@"
+
+Save this script as C</tmp/qemu.wrapper> (or wherever), C<chmod +x>,
+and then use it by setting the LIBGUESTFS_QEMU environment variable.
+For example:
+
+ LIBGUESTFS_QEMU=/tmp/qemu.wrapper guestfish
+
+Note that libguestfs also calls qemu with the -help and -version
+options in order to determine features.
+
+=head2 ABI GUARANTEE
+
+We guarantee the libguestfs ABI (binary interface), for public,
+high-level actions as outlined in this section.  Although we will
+deprecate some actions, for example if they get replaced by newer
+calls, we will keep the old actions forever.  This allows you the
+developer to program in confidence against the libguestfs API.
+
+=head2 BLOCK DEVICE NAMING
+
+In the kernel there is now quite a profusion of schemata for naming
+block devices (in this context, by I<block device> I mean a physical
+or virtual hard drive).  The original Linux IDE driver used names
+starting with C</dev/hd*>.  SCSI devices have historically used a
+different naming scheme, C</dev/sd*>.  When the Linux kernel I<libata>
+driver became a popular replacement for the old IDE driver
+(particularly for SATA devices) those devices also used the
+C</dev/sd*> scheme.  Additionally we now have virtual machines with
+paravirtualized drivers.  This has created several different naming
+systems, such as C</dev/vd*> for virtio disks and C</dev/xvd*> for Xen
+PV disks.
+
+As discussed above, libguestfs uses a qemu appliance running an
+embedded Linux kernel to access block devices.  We can run a variety
+of appliances based on a variety of Linux kernels.
+
+This causes a problem for libguestfs because many API calls use device
+or partition names.  Working scripts and the recipe (example) scripts
+that we make available over the internet could fail if the naming
+scheme changes.
+
+Therefore libguestfs defines C</dev/sd*> as the I<standard naming
+scheme>.  Internally C</dev/sd*> names are translated, if necessary,
+to other names as required.  For example, under RHEL 5 which uses the
+C</dev/hd*> scheme, any device parameter C</dev/sda2> is translated to
+C</dev/hda2> transparently.
+
+Note that this I<only> applies to parameters.  The
+L</guestfs_list_devices>, L</guestfs_list_partitions> and similar calls
+return the true names of the devices and partitions as known to the
+appliance.
+
+=head3 ALGORITHM FOR BLOCK DEVICE NAME TRANSLATION
+
+Usually this translation is transparent.  However in some (very rare)
+cases you may need to know the exact algorithm.  Such cases include
+where you use L</guestfs_config> to add a mixture of virtio and IDE
+devices to the qemu-based appliance, so have a mixture of C</dev/sd*>
+and C</dev/vd*> devices.
+
+The algorithm is applied only to I<parameters> which are known to be
+either device or partition names.  Return values from functions such
+as L</guestfs_list_devices> are never changed.
+
+=over 4
+
+=item *
+
+Is the string a parameter which is a device or partition name?
+
+=item *
+
+Does the string begin with C</dev/sd>?
+
+=item *
+
+Does the named device exist?  If so, we use that device.
+However if I<not> then we continue with this algorithm.
+
+=item *
+
+Replace initial C</dev/sd> string with C</dev/hd>.
+
+For example, change C</dev/sda2> to C</dev/hda2>.
+
+If that named device exists, use it.  If not, continue.
+
+=item *
+
+Replace initial C</dev/sd> string with C</dev/vd>.
+
+If that named device exists, use it.  If not, return an error.
+
+=back
+
+=head3 PORTABILITY CONCERNS WITH BLOCK DEVICE NAMING
+
+Although the standard naming scheme and automatic translation is
+useful for simple programs and guestfish scripts, for larger programs
+it is best not to rely on this mechanism.
+
+Where possible for maximum future portability programs using
+libguestfs should use these future-proof techniques:
+
+=over 4
+
+=item *
+
+Use L</guestfs_list_devices> or L</guestfs_list_partitions> to list
+actual device names, and then use those names directly.
+
+Since those device names exist by definition, they will never be
+translated.
+
+=item *
+
+Use higher level ways to identify filesystems, such as LVM names,
+UUIDs and filesystem labels.
+
+=back
+
+=head1 SECURITY
+
+This section discusses security implications of using libguestfs,
+particularly with untrusted or malicious guests or disk images.
+
+=head2 GENERAL SECURITY CONSIDERATIONS
+
+Be careful with any files or data that you download from a guest (by
+"download" we mean not just the L</guestfs_download> command but any
+command that reads files, filenames, directories or anything else from
+a disk image).  An attacker could manipulate the data to fool your
+program into doing the wrong thing.  Consider cases such as:
+
+=over 4
+
+=item *
+
+the data (file etc) not being present
+
+=item *
+
+being present but empty
+
+=item *
+
+being much larger than normal
+
+=item *
+
+containing arbitrary 8 bit data
+
+=item *
+
+being in an unexpected character encoding
+
+=item *
+
+containing homoglyphs.
+
+=back
+
+=head2 SECURITY OF MOUNTING FILESYSTEMS
+
+When you mount a filesystem under Linux, mistakes in the kernel
+filesystem (VFS) module can sometimes be escalated into exploits by
+deliberately creating a malicious, malformed filesystem.  These
+exploits are very severe for two reasons.  Firstly there are very many
+filesystem drivers in the kernel, and many of them are infrequently
+used and not much developer attention has been paid to the code.
+Linux userspace helps potential crackers by detecting the filesystem
+type and automatically choosing the right VFS driver, even if that
+filesystem type is obscure or unexpected for the administrator.
+Secondly, a kernel-level exploit is like a local root exploit (worse
+in some ways), giving immediate and total access to the system right
+down to the hardware level.
+
+That explains why you should never mount a filesystem from an
+untrusted guest on your host kernel.  How about libguestfs?  We run a
+Linux kernel inside a qemu virtual machine, usually running as a
+non-root user.  The attacker would need to write a filesystem which
+first exploited the kernel, and then exploited either qemu
+virtualization (eg. a faulty qemu driver) or the libguestfs protocol,
+and finally to be as serious as the host kernel exploit it would need
+to escalate its privileges to root.  This multi-step escalation,
+performed by a static piece of data, is thought to be extremely hard
+to do, although we never say 'never' about security issues.
+
+In any case callers can reduce the attack surface by forcing the
+filesystem type when mounting (use L</guestfs_mount_vfs>).
+
+=head2 PROTOCOL SECURITY
+
+The protocol is designed to be secure, being based on RFC 4506 (XDR)
+with a defined upper message size.  However a program that uses
+libguestfs must also take care - for example you can write a program
+that downloads a binary from a disk image and executes it locally, and
+no amount of protocol security will save you from the consequences.
+
+=head2 INSPECTION SECURITY
+
+Parts of the inspection API (see L</INSPECTION>) return untrusted
+strings directly from the guest, and these could contain any 8 bit
+data.  Callers should be careful to escape these before printing them
+to a structured file (for example, use HTML escaping if creating a web
+page).
+
+The inspection API parses guest configuration using two external
+libraries: Augeas (Linux configuration) and hivex (Windows Registry).
+Both are designed to be robust in the face of malicious data, although
+denial of service attacks are still possible, for example with
+oversized configuration files.
+
+=head2 RUNNING UNTRUSTED GUEST COMMANDS
+
+Be very cautious about running commands from the guest.  By running a
+command in the guest, you are giving CPU time to a binary that you do
+not control, under the same user account as the library, albeit
+wrapped in qemu virtualization.  More information and alternatives can
+be found in the section L</RUNNING COMMANDS>.
+
+=head2 CVE-2010-3851
+
+https://bugzilla.redhat.com/642934
+
+This security bug concerns the automatic disk format detection that
+qemu does on disk images.
+
+A raw disk image is just the raw bytes, there is no header.  Other
+disk images like qcow2 contain a special header.  Qemu deals with this
+by looking for one of the known headers, and if none is found then
+assuming the disk image must be raw.
+
+This allows a guest which has been given a raw disk image to write
+some other header.  At next boot (or when the disk image is accessed
+by libguestfs) qemu would do autodetection and think the disk image
+format was, say, qcow2 based on the header written by the guest.
+
+This in itself would not be a problem, but qcow2 offers many features,
+one of which is to allow a disk image to refer to another image
+(called the "backing disk").  It does this by placing the path to the
+backing disk into the qcow2 header.  This path is not validated and
+could point to any host file (eg. "/etc/passwd").  The backing disk is
+then exposed through "holes" in the qcow2 disk image, which of course
+is completely under the control of the attacker.
+
+In libguestfs this is rather hard to exploit except under two
+circumstances:
+
+=over 4
+
+=item 1.
+
+You have enabled the network or have opened the disk in write mode.
+
+=item 2.
+
+You are also running untrusted code from the guest (see
+L</RUNNING COMMANDS>).
+
+=back
+
+The way to avoid this is to specify the expected disk format when
+adding disks (the optional C<format> option to
+L</guestfs_add_drive_opts>).  You should always do this if the disk is
+raw format, and it's a good idea for other cases too.
+
+For disks added from libvirt using calls like L</guestfs_add_domain>,
+the format is fetched from libvirt and passed through.
+
+For libguestfs tools, use the I<--format> command line parameter as
+appropriate.
+
 =head1 CONNECTION MANAGEMENT
 
 =head2 guestfs_h *
 =head1 CONNECTION MANAGEMENT
 
 =head2 guestfs_h *
@@ -891,17 +1197,55 @@ This closes the connection handle and frees up all resources used.
 
 =head1 ERROR HANDLING
 
 
 =head1 ERROR HANDLING
 
-The convention in all functions that return C<int> is that they return
-C<-1> to indicate an error.  You can get additional information on
-errors by calling L</guestfs_last_error> and/or by setting up an error
-handler with L</guestfs_set_error_handler>.
+API functions can return errors.  For example, almost all functions
+that return C<int> will return C<-1> to indicate an error.
+
+Additional information is available for errors: an error message
+string and optionally an error number (errno) if the thing that failed
+was a system call.
+
+You can get at the additional information about the last error on the
+handle by calling L</guestfs_last_error>, L</guestfs_last_errno>,
+and/or by setting up an error handler with
+L</guestfs_set_error_handler>.
+
+When the handle is created, a default error handler is installed which
+prints the error message string to C<stderr>.  For small short-running
+command line programs it is sufficient to do:
+
+ if (guestfs_launch (g) == -1)
+   exit (EXIT_FAILURE);
+
+since the default error handler will ensure that an error message has
+been printed to C<stderr> before the program exits.
 
 
-The default error handler prints the information string to C<stderr>.
+For other programs the caller will almost certainly want to install an
+alternate error handler or do error handling in-line like this:
+
+ g = guestfs_create ();
+ /* This disables the default behaviour of printing errors
+    on stderr. */
+ guestfs_set_error_handler (g, NULL, NULL);
+ if (guestfs_launch (g) == -1) {
+   /* Examine the error message and print it etc. */
+   char *msg = guestfs_last_error (g);
+   int errnum = guestfs_last_errno (g);
+   fprintf (stderr, "%s\n", msg);
+   /* ... */
+  }
 
 Out of memory errors are handled differently.  The default action is
 to call L<abort(3)>.  If this is undesirable, then you can set a
 handler using L</guestfs_set_out_of_memory_handler>.
 
 
 Out of memory errors are handled differently.  The default action is
 to call L<abort(3)>.  If this is undesirable, then you can set a
 handler using L</guestfs_set_out_of_memory_handler>.
 
+L</guestfs_create> returns C<NULL> if the handle cannot be created,
+and because there is no handle if this happens there is no way to get
+additional error information.  However L</guestfs_create> is supposed
+to be a lightweight operation which can only fail because of
+insufficient memory (it returns NULL in this case).
+
 =head2 guestfs_last_error
 
  const char *guestfs_last_error (guestfs_h *g);
 =head2 guestfs_last_error
 
  const char *guestfs_last_error (guestfs_h *g);
@@ -913,9 +1257,44 @@ returns C<NULL>.
 The lifetime of the returned string is until the next error occurs, or
 L</guestfs_close> is called.
 
 The lifetime of the returned string is until the next error occurs, or
 L</guestfs_close> is called.
 
-The error string is not localized (ie. is always in English), because
-this makes searching for error messages in search engines give the
-largest number of results.
+=head2 guestfs_last_errno
+
+ int guestfs_last_errno (guestfs_h *g);
+
+This returns the last error number (errno) that happened on C<g>.
+
+If successful, an errno integer not equal to zero is returned.
+
+If no error, this returns 0.  This call can return 0 in three
+situations:
+
+=over 4
+
+=item 1.
+
+There has not been any error on the handle.
+
+=item 2.
+
+There has been an error but the errno was meaningless.  This
+corresponds to the case where the error did not come from a
+failed system call, but for some other reason.
+
+=item 3.
+
+There was an error from a failed system call, but for some
+reason the errno was not captured and returned.  This usually
+indicates a bug in libguestfs.
+
+=back
+
+Libguestfs tries to convert the errno from inside the applicance into
+a corresponding errno for the caller (not entirely trivial: the
+appliance might be running a completely different operating system
+from the library and error numbers are not standardized across
+Un*xen).  If this could not be done, then the error is translated to
+C<EINVAL>.  In practice this should only happen in very rare
+circumstances.
 
 =head2 guestfs_set_error_handler
 
 
 =head2 guestfs_set_error_handler
 
@@ -930,6 +1309,9 @@ The callback C<cb> will be called if there is an error.  The
 parameters passed to the callback are an opaque data pointer and the
 error message string.
 
 parameters passed to the callback are an opaque data pointer and the
 error message string.
 
+C<errno> is not passed to the callback.  To get that the callback must
+call L</guestfs_last_errno>.
+
 Note that the message string C<msg> is freed as soon as the callback
 function returns, so if you want to stash it somewhere you must make
 your own copy.
 Note that the message string C<msg> is freed as soon as the callback
 function returns, so if you want to stash it somewhere you must make
 your own copy.
@@ -965,30 +1347,7 @@ situations.
 
 This returns the current out of memory handler.
 
 
 This returns the current out of memory handler.
 
-=head1 PATH
-
-Libguestfs needs a kernel and initrd.img, which it finds by looking
-along an internal path.
-
-By default it looks for these in the directory C<$libdir/guestfs>
-(eg. C</usr/local/lib/guestfs> or C</usr/lib64/guestfs>).
-
-Use L</guestfs_set_path> or set the environment variable
-L</LIBGUESTFS_PATH> to change the directories that libguestfs will
-search in.  The value is a colon-separated list of paths.  The current
-directory is I<not> searched unless the path contains an empty element
-or C<.>.  For example C<LIBGUESTFS_PATH=:/usr/lib/guestfs> would
-search the current directory and then C</usr/lib/guestfs>.
-
-=head1 HIGH-LEVEL API ACTIONS
-
-=head2 ABI GUARANTEE
-
-We guarantee the libguestfs ABI (binary interface), for public,
-high-level actions as outlined in this section.  Although we will
-deprecate some actions, for example if they get replaced by newer
-calls, we will keep the old actions forever.  This allows you the
-developer to program in confidence against the libguestfs API.
+=head1 API CALLS
 
 @ACTIONS@
 
 
 @ACTIONS@
 
@@ -1183,112 +1542,6 @@ language-specific documentation for more details on that.
 
 For guestfish, see L<guestfish(1)/OPTIONAL ARGUMENTS>.
 
 
 For guestfish, see L<guestfish(1)/OPTIONAL ARGUMENTS>.
 
-=begin html
-
-<!-- old anchor for the next section -->
-<a name="state_machine_and_low_level_event_api"/>
-
-=end html
-
-=head1 ARCHITECTURE
-
-Internally, libguestfs is implemented by running an appliance (a
-special type of small virtual machine) using L<qemu(1)>.  Qemu runs as
-a child process of the main program.
-
-  ___________________
- /                   \
- | main program      |
- |                   |
- |                   |           child process / appliance
- |                   |           __________________________
- |                   |          / qemu                     \
- +-------------------+   RPC    |      +-----------------+ |
- | libguestfs     <--------------------> guestfsd        | |
- |                   |          |      +-----------------+ |
- \___________________/          |      | Linux kernel    | |
-                                |      +--^--------------+ |
-                                \_________|________________/
-                                          |
-                                   _______v______
-                                  /              \
-                                  | Device or    |
-                                  | disk image   |
-                                  \______________/
-
-The library, linked to the main program, creates the child process and
-hence the appliance in the L</guestfs_launch> function.
-
-Inside the appliance is a Linux kernel and a complete stack of
-userspace tools (such as LVM and ext2 programs) and a small
-controlling daemon called L</guestfsd>.  The library talks to
-L</guestfsd> using remote procedure calls (RPC).  There is a mostly
-one-to-one correspondence between libguestfs API calls and RPC calls
-to the daemon.  Lastly the disk image(s) are attached to the qemu
-process which translates device access by the appliance's Linux kernel
-into accesses to the image.
-
-A common misunderstanding is that the appliance "is" the virtual
-machine.  Although the disk image you are attached to might also be
-used by some virtual machine, libguestfs doesn't know or care about
-this.  (But you will care if both libguestfs's qemu process and your
-virtual machine are trying to update the disk image at the same time,
-since these usually results in massive disk corruption).
-
-=head1 STATE MACHINE
-
-libguestfs uses a state machine to model the child process:
-
-                         |
-                    guestfs_create
-                         |
-                         |
-                     ____V_____
-                    /          \
-                    |  CONFIG  |
-                    \__________/
-                     ^ ^   ^  \
-                    /  |    \  \ guestfs_launch
-                   /   |    _\__V______
-                  /    |   /           \
-                 /     |   | LAUNCHING |
-                /      |   \___________/
-               /       |       /
-              /        |  guestfs_launch
-             /         |     /
-    ______  /        __|____V
-   /      \ ------> /        \
-   | BUSY |         | READY  |
-   \______/ <------ \________/
-
-The normal transitions are (1) CONFIG (when the handle is created, but
-there is no child process), (2) LAUNCHING (when the child process is
-booting up), (3) alternating between READY and BUSY as commands are
-issued to, and carried out by, the child process.
-
-The guest may be killed by L</guestfs_kill_subprocess>, or may die
-asynchronously at any time (eg. due to some internal error), and that
-causes the state to transition back to CONFIG.
-
-Configuration commands for qemu such as L</guestfs_add_drive> can only
-be issued when in the CONFIG state.
-
-The API offers one call that goes from CONFIG through LAUNCHING to
-READY.  L</guestfs_launch> blocks until the child process is READY to
-accept commands (or until some failure or timeout).
-L</guestfs_launch> internally moves the state from CONFIG to LAUNCHING
-while it is running.
-
-API actions such as L</guestfs_mount> can only be issued when in the
-READY state.  These API calls block waiting for the command to be
-carried out (ie. the state to transition to BUSY and then back to
-READY).  There are no non-blocking versions, and no way to issue more
-than one command per handle at the same time.
-
-Finally, the child process sends asynchronous messages back to the
-main program, such as kernel log messages.  You can register a
-callback to receive these messages.
-
 =head2 SETTING CALLBACKS TO HANDLE EVENTS
 
 The child process generates events in some situations.  Current events
 =head2 SETTING CALLBACKS TO HANDLE EVENTS
 
 The child process generates events in some situations.  Current events
@@ -1447,108 +1700,111 @@ and note that only one callback can be registered for a handle).
 The private data area is implemented using a hash table, and should be
 reasonably efficient for moderate numbers of keys.
 
 The private data area is implemented using a hash table, and should be
 reasonably efficient for moderate numbers of keys.
 
-=head1 BLOCK DEVICE NAMING
-
-In the kernel there is now quite a profusion of schemata for naming
-block devices (in this context, by I<block device> I mean a physical
-or virtual hard drive).  The original Linux IDE driver used names
-starting with C</dev/hd*>.  SCSI devices have historically used a
-different naming scheme, C</dev/sd*>.  When the Linux kernel I<libata>
-driver became a popular replacement for the old IDE driver
-(particularly for SATA devices) those devices also used the
-C</dev/sd*> scheme.  Additionally we now have virtual machines with
-paravirtualized drivers.  This has created several different naming
-systems, such as C</dev/vd*> for virtio disks and C</dev/xvd*> for Xen
-PV disks.
-
-As discussed above, libguestfs uses a qemu appliance running an
-embedded Linux kernel to access block devices.  We can run a variety
-of appliances based on a variety of Linux kernels.
-
-This causes a problem for libguestfs because many API calls use device
-or partition names.  Working scripts and the recipe (example) scripts
-that we make available over the internet could fail if the naming
-scheme changes.
-
-Therefore libguestfs defines C</dev/sd*> as the I<standard naming
-scheme>.  Internally C</dev/sd*> names are translated, if necessary,
-to other names as required.  For example, under RHEL 5 which uses the
-C</dev/hd*> scheme, any device parameter C</dev/sda2> is translated to
-C</dev/hda2> transparently.
-
-Note that this I<only> applies to parameters.  The
-L</guestfs_list_devices>, L</guestfs_list_partitions> and similar calls
-return the true names of the devices and partitions as known to the
-appliance.
-
-=head2 ALGORITHM FOR BLOCK DEVICE NAME TRANSLATION
-
-Usually this translation is transparent.  However in some (very rare)
-cases you may need to know the exact algorithm.  Such cases include
-where you use L</guestfs_config> to add a mixture of virtio and IDE
-devices to the qemu-based appliance, so have a mixture of C</dev/sd*>
-and C</dev/vd*> devices.
-
-The algorithm is applied only to I<parameters> which are known to be
-either device or partition names.  Return values from functions such
-as L</guestfs_list_devices> are never changed.
-
-=over 4
-
-=item *
-
-Is the string a parameter which is a device or partition name?
-
-=item *
-
-Does the string begin with C</dev/sd>?
-
-=item *
-
-Does the named device exist?  If so, we use that device.
-However if I<not> then we continue with this algorithm.
-
-=item *
+=begin html
 
 
-Replace initial C</dev/sd> string with C</dev/hd>.
+<!-- old anchor for the next section -->
+<a name="state_machine_and_low_level_event_api"/>
 
 
-For example, change C</dev/sda2> to C</dev/hda2>.
+=end html
 
 
-If that named device exists, use it.  If not, continue.
+=head1 ARCHITECTURE
 
 
-=item *
+Internally, libguestfs is implemented by running an appliance (a
+special type of small virtual machine) using L<qemu(1)>.  Qemu runs as
+a child process of the main program.
 
 
-Replace initial C</dev/sd> string with C</dev/vd>.
+  ___________________
+ /                   \
+ | main program      |
+ |                   |
+ |                   |           child process / appliance
+ |                   |           __________________________
+ |                   |          / qemu                     \
+ +-------------------+   RPC    |      +-----------------+ |
+ | libguestfs     <--------------------> guestfsd        | |
+ |                   |          |      +-----------------+ |
+ \___________________/          |      | Linux kernel    | |
+                                |      +--^--------------+ |
+                                \_________|________________/
+                                          |
+                                   _______v______
+                                  /              \
+                                  | Device or    |
+                                  | disk image   |
+                                  \______________/
 
 
-If that named device exists, use it.  If not, return an error.
+The library, linked to the main program, creates the child process and
+hence the appliance in the L</guestfs_launch> function.
 
 
-=back
+Inside the appliance is a Linux kernel and a complete stack of
+userspace tools (such as LVM and ext2 programs) and a small
+controlling daemon called L</guestfsd>.  The library talks to
+L</guestfsd> using remote procedure calls (RPC).  There is a mostly
+one-to-one correspondence between libguestfs API calls and RPC calls
+to the daemon.  Lastly the disk image(s) are attached to the qemu
+process which translates device access by the appliance's Linux kernel
+into accesses to the image.
 
 
-=head2 PORTABILITY CONCERNS
+A common misunderstanding is that the appliance "is" the virtual
+machine.  Although the disk image you are attached to might also be
+used by some virtual machine, libguestfs doesn't know or care about
+this.  (But you will care if both libguestfs's qemu process and your
+virtual machine are trying to update the disk image at the same time,
+since these usually results in massive disk corruption).
 
 
-Although the standard naming scheme and automatic translation is
-useful for simple programs and guestfish scripts, for larger programs
-it is best not to rely on this mechanism.
+=head1 STATE MACHINE
 
 
-Where possible for maximum future portability programs using
-libguestfs should use these future-proof techniques:
+libguestfs uses a state machine to model the child process:
 
 
-=over 4
+                         |
+                    guestfs_create
+                         |
+                         |
+                     ____V_____
+                    /          \
+                    |  CONFIG  |
+                    \__________/
+                     ^ ^   ^  \
+                    /  |    \  \ guestfs_launch
+                   /   |    _\__V______
+                  /    |   /           \
+                 /     |   | LAUNCHING |
+                /      |   \___________/
+               /       |       /
+              /        |  guestfs_launch
+             /         |     /
+    ______  /        __|____V
+   /      \ ------> /        \
+   | BUSY |         | READY  |
+   \______/ <------ \________/
 
 
-=item *
+The normal transitions are (1) CONFIG (when the handle is created, but
+there is no child process), (2) LAUNCHING (when the child process is
+booting up), (3) alternating between READY and BUSY as commands are
+issued to, and carried out by, the child process.
 
 
-Use L</guestfs_list_devices> or L</guestfs_list_partitions> to list
-actual device names, and then use those names directly.
+The guest may be killed by L</guestfs_kill_subprocess>, or may die
+asynchronously at any time (eg. due to some internal error), and that
+causes the state to transition back to CONFIG.
 
 
-Since those device names exist by definition, they will never be
-translated.
+Configuration commands for qemu such as L</guestfs_add_drive> can only
+be issued when in the CONFIG state.
 
 
-=item *
+The API offers one call that goes from CONFIG through LAUNCHING to
+READY.  L</guestfs_launch> blocks until the child process is READY to
+accept commands (or until some failure or timeout).
+L</guestfs_launch> internally moves the state from CONFIG to LAUNCHING
+while it is running.
 
 
-Use higher level ways to identify filesystems, such as LVM names,
-UUIDs and filesystem labels.
+API actions such as L</guestfs_mount> can only be issued when in the
+READY state.  These API calls block waiting for the command to be
+carried out (ie. the state to transition to BUSY and then back to
+READY).  There are no non-blocking versions, and no way to issue more
+than one command per handle at the same time.
 
 
-=back
+Finally, the child process sends asynchronous messages back to the
+main program, such as kernel log messages.  You can register a
+callback to receive these messages.
 
 =head1 INTERNALS
 
 
 =head1 INTERNALS
 
@@ -1704,45 +1960,6 @@ The daemon self-limits the frequency of progress messages it sends
 (see C<daemon/proto.c:notify_progress>).  Not all calls generate
 progress messages.
 
 (see C<daemon/proto.c:notify_progress>).  Not all calls generate
 progress messages.
 
-=head1 MULTIPLE HANDLES AND MULTIPLE THREADS
-
-All high-level libguestfs actions are synchronous.  If you want
-to use libguestfs asynchronously then you must create a thread.
-
-Only use the handle from a single thread.  Either use the handle
-exclusively from one thread, or provide your own mutex so that two
-threads cannot issue calls on the same handle at the same time.
-
-See the graphical program guestfs-browser for one possible
-architecture for multithreaded programs using libvirt and libguestfs.
-
-=head1 QEMU WRAPPERS
-
-If you want to compile your own qemu, run qemu from a non-standard
-location, or pass extra arguments to qemu, then you can write a
-shell-script wrapper around qemu.
-
-There is one important rule to remember: you I<must C<exec qemu>> as
-the last command in the shell script (so that qemu replaces the shell
-and becomes the direct child of the libguestfs-using program).  If you
-don't do this, then the qemu process won't be cleaned up correctly.
-
-Here is an example of a wrapper, where I have built my own copy of
-qemu from source:
-
- #!/bin/sh -
- qemudir=/home/rjones/d/qemu
- exec $qemudir/x86_64-softmmu/qemu-system-x86_64 -L $qemudir/pc-bios "$@"
-
-Save this script as C</tmp/qemu.wrapper> (or wherever), C<chmod +x>,
-and then use it by setting the LIBGUESTFS_QEMU environment variable.
-For example:
-
- LIBGUESTFS_QEMU=/tmp/qemu.wrapper guestfish
-
-Note that libguestfs also calls qemu with the -help and -version
-options in order to determine features.
-
 =head1 LIBGUESTFS VERSION NUMBERS
 
 Since April 2010, libguestfs has started to make separate development
 =head1 LIBGUESTFS VERSION NUMBERS
 
 Since April 2010, libguestfs has started to make separate development