(* Bitmatch syntax extension. * Copyright (C) 2008 Red Hat Inc., Richard W.M. Jones * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * $Id$ *) open Printf open Camlp4.PreCast open Syntax open Ast open Bitmatch module P = Bitmatch_persistent (* If this is true then we emit some debugging code which can * be useful to tell what is happening during matches. You * also need to do 'Bitmatch.debug := true' in your main program. * * If this is false then no extra debugging code is emitted. *) let debug = false (* Hashtable storing named persistent patterns. *) let pattern_hash : (string, P.pattern) Hashtbl.t = Hashtbl.create 13 (* Work out if an expression is an integer constant. * * Returns [Some i] if so (where i is the integer value), else [None]. * * Fairly simplistic algorithm: we can only detect simple constant * expressions such as [k], [k+c], [k-c] etc. *) let rec expr_is_constant = function | <:expr< $int:i$ >> -> (* Literal integer constant. *) Some (int_of_string i) | <:expr< $a$ + $b$ >> -> (* Addition of constants. *) (match expr_is_constant a, expr_is_constant b with | Some a, Some b -> Some (a+b) | _ -> None) | <:expr< $a$ - $b$ >> -> (* Subtraction. *) (match expr_is_constant a, expr_is_constant b with | Some a, Some b -> Some (a-b) | _ -> None) | <:expr< $a$ * $b$ >> -> (* Multiplication. *) (match expr_is_constant a, expr_is_constant b with | Some a, Some b -> Some (a*b) | _ -> None) | <:expr< $a$ / $b$ >> -> (* Division. *) (match expr_is_constant a, expr_is_constant b with | Some a, Some b -> Some (a/b) | _ -> None) | <:expr< $a$ lsl $b$ >> -> (* Shift left. *) (match expr_is_constant a, expr_is_constant b with | Some a, Some b -> Some (a lsl b) | _ -> None) | <:expr< $a$ lsr $b$ >> -> (* Shift right. *) (match expr_is_constant a, expr_is_constant b with | Some a, Some b -> Some (a lsr b) | _ -> None) | _ -> None (* Anything else is not constant. *) (* Generate a fresh, unique symbol each time called. *) let gensym = let i = ref 1000 in fun name -> incr i; let i = !i in sprintf "__pabitmatch_%s_%d" name i (* Deal with the qualifiers which appear for a field of both types. *) let parse_field _loc field qs = let endian_set, signed_set, type_set, offset_set, field = match qs with | None -> (false, false, false, false, field) | Some qs -> List.fold_left ( fun (endian_set, signed_set, type_set, offset_set, field) qual_expr -> match qual_expr with | "bigendian", None -> if endian_set then Loc.raise _loc (Failure "an endian flag has been set already") else ( let field = P.set_endian field BigEndian in (true, signed_set, type_set, offset_set, field) ) | "littleendian", None -> if endian_set then Loc.raise _loc (Failure "an endian flag has been set already") else ( let field = P.set_endian field LittleEndian in (true, signed_set, type_set, offset_set, field) ) | "nativeendian", None -> if endian_set then Loc.raise _loc (Failure "an endian flag has been set already") else ( let field = P.set_endian field NativeEndian in (true, signed_set, type_set, offset_set, field) ) | "endian", Some expr -> if endian_set then Loc.raise _loc (Failure "an endian flag has been set already") else ( let field = P.set_endian_expr field expr in (true, signed_set, type_set, offset_set, field) ) | "signed", None -> if signed_set then Loc.raise _loc (Failure "a signed flag has been set already") else ( let field = P.set_signed field true in (endian_set, true, type_set, offset_set, field) ) | "unsigned", None -> if signed_set then Loc.raise _loc (Failure "a signed flag has been set already") else ( let field = P.set_signed field false in (endian_set, true, type_set, offset_set, field) ) | "int", None -> if type_set then Loc.raise _loc (Failure "a type flag has been set already") else ( let field = P.set_type_int field in (endian_set, signed_set, true, offset_set, field) ) | "string", None -> if type_set then Loc.raise _loc (Failure "a type flag has been set already") else ( let field = P.set_type_string field in (endian_set, signed_set, true, offset_set, field) ) | "bitstring", None -> if type_set then Loc.raise _loc (Failure "a type flag has been set already") else ( let field = P.set_type_bitstring field in (endian_set, signed_set, true, offset_set, field) ) | "offset", Some expr -> if offset_set then Loc.raise _loc (Failure "an offset has been set already") else ( let field = P.set_offset field expr in (endian_set, signed_set, type_set, true, field) ) | s, Some _ -> Loc.raise _loc (Failure (s ^ ": unknown qualifier, or qualifier should not be followed by an expression")) | s, None -> Loc.raise _loc (Failure (s ^ ": unknown qualifier, or qualifier should be followed by an expression")) ) (false, false, false, false, field) qs in (* If type is set to string or bitstring then endianness and * signedness qualifiers are meaningless and must not be set. *) let () = let t = P.get_type field in if (t = P.Bitstring || t = P.String) && (endian_set || signed_set) then Loc.raise _loc ( Failure "string types and endian or signed qualifiers cannot be mixed" ) in (* Default endianness, signedness, type if not set already. *) let field = if endian_set then field else P.set_endian field BigEndian in let field = if signed_set then field else P.set_signed field false in let field = if type_set then field else P.set_type_int field in field (* Generate the code for a constructor, ie. 'BITSTRING ...'. *) let output_constructor _loc fields = let loc_fname = Loc.file_name _loc in let loc_line = string_of_int (Loc.start_line _loc) in let loc_char = string_of_int (Loc.start_off _loc - Loc.start_bol _loc) in (* Bitstrings are created like the 'Buffer' module (in fact, using * the Buffer module), by appending snippets to a growing buffer. * This is reasonably efficient and avoids a lot of garbage. *) let buffer = gensym "buffer" in (* General exception which is raised inside the constructor functions * when an int expression is out of range at runtime. *) let exn = gensym "exn" in let exn_used = ref false in (* Convert each field to a simple bitstring-generating expression. *) let fields = List.map ( fun field -> let fexpr = P.get_expr field in let flen = P.get_length field in let endian = P.get_endian field in let signed = P.get_signed field in let t = P.get_type field in let _loc = P.get_location field in let offset = P.get_offset field in (* offset() not supported in constructors. Implementation of * forward-only offsets is fairly straightforward: we would * need to just calculate the length of padding here and add * it to what has been constructed. For general offsets, * including going backwards, that would require a rethink in * how we construct bitstrings. *) if offset <> None then ( Loc.raise _loc (Failure "offset expressions are not supported in BITSTRING constructors") ); (* Is flen an integer constant? If so, what is it? This * is very simple-minded and only detects simple constants. *) let flen_is_const = expr_is_constant flen in (* Choose the right constructor function. *) let int_construct_const = function (* XXX The meaning of signed/unsigned breaks down at * 31, 32, 63 and 64 bits. *) | (1, _, _) -> <:expr> | ((2|3|4|5|6|7|8), _, false) -> <:expr> | ((2|3|4|5|6|7|8), _, true) -> <:expr> | (i, P.ConstantEndian BigEndian, false) when i <= 31 -> <:expr> | (i, P.ConstantEndian BigEndian, true) when i <= 31 -> <:expr> | (i, P.ConstantEndian LittleEndian, false) when i <= 31 -> <:expr> | (i, P.ConstantEndian LittleEndian, true) when i <= 31 -> <:expr> | (i, P.ConstantEndian NativeEndian, false) when i <= 31 -> <:expr> | (i, P.ConstantEndian NativeEndian, true) when i <= 31 -> <:expr> | (i, P.EndianExpr expr, false) when i <= 31 -> <:expr> | (i, P.EndianExpr expr, true) when i <= 31 -> <:expr> | (32, P.ConstantEndian BigEndian, false) -> <:expr> | (32, P.ConstantEndian BigEndian, true) -> <:expr> | (32, P.ConstantEndian LittleEndian, false) -> <:expr> | (32, P.ConstantEndian LittleEndian, true) -> <:expr> | (32, P.ConstantEndian NativeEndian, false) -> <:expr> | (32, P.ConstantEndian NativeEndian, true) -> <:expr> | (32, P.EndianExpr expr, false) -> <:expr> | (32, P.EndianExpr expr, true) -> <:expr> | (_, P.ConstantEndian BigEndian, false) -> <:expr> | (_, P.ConstantEndian BigEndian, true) -> <:expr> | (_, P.ConstantEndian LittleEndian, false) -> <:expr> | (_, P.ConstantEndian LittleEndian, true) -> <:expr> | (_, P.ConstantEndian NativeEndian, false) -> <:expr> | (_, P.ConstantEndian NativeEndian, true) -> <:expr> | (_, P.EndianExpr expr, false) -> <:expr> | (_, P.EndianExpr expr, true) -> <:expr> in let int_construct = function | (P.ConstantEndian BigEndian, false) -> <:expr> | (P.ConstantEndian BigEndian, true) -> <:expr> | (P.ConstantEndian LittleEndian, false) -> <:expr> | (P.ConstantEndian LittleEndian, true) -> <:expr> | (P.ConstantEndian NativeEndian, false) -> <:expr> | (P.ConstantEndian NativeEndian, true) -> <:expr> | (P.EndianExpr expr, false) -> <:expr> | (P.EndianExpr expr, true) -> <:expr> in let expr = match t, flen_is_const with (* Common case: int field, constant flen. * * Range checks are done inside the construction function * because that's a lot simpler w.r.t. types. It might * be better to move them here. XXX *) | P.Int, Some i when i > 0 && i <= 64 -> let construct_fn = int_construct_const (i,endian,signed) in exn_used := true; <:expr< $construct_fn$ $lid:buffer$ $fexpr$ $`int:i$ $lid:exn$ >> | P.Int, Some _ -> Loc.raise _loc (Failure "length of int field must be [1..64]") (* Int field, non-constant length. We need to perform a runtime * test to ensure the length is [1..64]. * * Range checks are done inside the construction function * because that's a lot simpler w.r.t. types. It might * be better to move them here. XXX *) | P.Int, None -> let construct_fn = int_construct (endian,signed) in exn_used := true; <:expr< if $flen$ >= 1 && $flen$ <= 64 then $construct_fn$ $lid:buffer$ $fexpr$ $flen$ $lid:exn$ else raise (Bitmatch.Construct_failure ("length of int field must be [1..64]", $str:loc_fname$, $int:loc_line$, $int:loc_char$)) >> (* String, constant length > 0, must be a multiple of 8. *) | P.String, Some i when i > 0 && i land 7 = 0 -> let bs = gensym "bs" in let j = i lsr 3 in <:expr< let $lid:bs$ = $fexpr$ in if String.length $lid:bs$ = $`int:j$ then Bitmatch.construct_string $lid:buffer$ $lid:bs$ else raise (Bitmatch.Construct_failure ("length of string does not match declaration", $str:loc_fname$, $int:loc_line$, $int:loc_char$)) >> (* String, constant length -1, means variable length string * with no checks. *) | P.String, Some (-1) -> <:expr< Bitmatch.construct_string $lid:buffer$ $fexpr$ >> (* String, constant length = 0 is probably an error, and so is * any other value. *) | P.String, Some _ -> Loc.raise _loc (Failure "length of string must be > 0 and a multiple of 8, or the special value -1") (* String, non-constant length. * We check at runtime that the length is > 0, a multiple of 8, * and matches the declared length. *) | P.String, None -> let bslen = gensym "bslen" in let bs = gensym "bs" in <:expr< let $lid:bslen$ = $flen$ in if $lid:bslen$ > 0 then ( if $lid:bslen$ land 7 = 0 then ( let $lid:bs$ = $fexpr$ in if String.length $lid:bs$ = ($lid:bslen$ lsr 3) then Bitmatch.construct_string $lid:buffer$ $lid:bs$ else raise (Bitmatch.Construct_failure ("length of string does not match declaration", $str:loc_fname$, $int:loc_line$, $int:loc_char$)) ) else raise (Bitmatch.Construct_failure ("length of string must be a multiple of 8", $str:loc_fname$, $int:loc_line$, $int:loc_char$)) ) else raise (Bitmatch.Construct_failure ("length of string must be > 0", $str:loc_fname$, $int:loc_line$, $int:loc_char$)) >> (* Bitstring, constant length >= 0. *) | P.Bitstring, Some i when i >= 0 -> let bs = gensym "bs" in <:expr< let $lid:bs$ = $fexpr$ in if Bitmatch.bitstring_length $lid:bs$ = $`int:i$ then Bitmatch.construct_bitstring $lid:buffer$ $lid:bs$ else raise (Bitmatch.Construct_failure ("length of bitstring does not match declaration", $str:loc_fname$, $int:loc_line$, $int:loc_char$)) >> (* Bitstring, constant length -1, means variable length bitstring * with no checks. *) | P.Bitstring, Some (-1) -> <:expr< Bitmatch.construct_bitstring $lid:buffer$ $fexpr$ >> (* Bitstring, constant length < -1 is an error. *) | P.Bitstring, Some _ -> Loc.raise _loc (Failure "length of bitstring must be >= 0 or the special value -1") (* Bitstring, non-constant length. * We check at runtime that the length is >= 0 and matches * the declared length. *) | P.Bitstring, None -> let bslen = gensym "bslen" in let bs = gensym "bs" in <:expr< let $lid:bslen$ = $flen$ in if $lid:bslen$ >= 0 then ( let $lid:bs$ = $fexpr$ in if Bitmatch.bitstring_length $lid:bs$ = $lid:bslen$ then Bitmatch.construct_bitstring $lid:buffer$ $lid:bs$ else raise (Bitmatch.Construct_failure ("length of bitstring does not match declaration", $str:loc_fname$, $int:loc_line$, $int:loc_char$)) ) else raise (Bitmatch.Construct_failure ("length of bitstring must be > 0", $str:loc_fname$, $int:loc_line$, $int:loc_char$)) >> in expr ) fields in (* Create the final bitstring. Start by creating an empty buffer * and then evaluate each expression above in turn which will * append some more to the bitstring buffer. Finally extract * the bitstring. * * XXX We almost have enough information to be able to guess * a good initial size for the buffer. *) let fields = match fields with | [] -> <:expr< [] >> | h::t -> List.fold_left (fun h t -> <:expr< $h$; $t$ >>) h t in let expr = <:expr< let $lid:buffer$ = Bitmatch.Buffer.create () in $fields$; Bitmatch.Buffer.contents $lid:buffer$ >> in if !exn_used then <:expr< let $lid:exn$ = Bitmatch.Construct_failure ("value out of range", $str:loc_fname$, $int:loc_line$, $int:loc_char$) in $expr$ >> else expr (* Generate the code for a bitmatch statement. '_loc' is the * location, 'bs' is the bitstring parameter, 'cases' are * the list of cases to test against. *) let output_bitmatch _loc bs cases = let data = gensym "data" and off = gensym "off" and len = gensym "len" in let result = gensym "result" in (* This generates the field extraction code for each * field in a single case. There must be enough remaining data * in the bitstring to satisfy the field. * * As we go through the fields, symbols 'data', 'off' and 'len' * track our position and remaining length in the bitstring. * * The whole thing is a lot of nested 'if' statements. Code * is generated from the inner-most (last) field outwards. *) let rec output_field_extraction inner = function | [] -> inner | field :: fields -> let fpatt = P.get_patt field in let flen = P.get_length field in let endian = P.get_endian field in let signed = P.get_signed field in let t = P.get_type field in let _loc = P.get_location field in let offset = P.get_offset field in (* Is flen (field len) an integer constant? If so, what is it? * This will be [Some i] if it's a constant or [None] if it's * non-constant or we couldn't determine. *) let flen_is_const = expr_is_constant flen in let int_extract_const = function (* XXX The meaning of signed/unsigned breaks down at * 31, 32, 63 and 64 bits. *) | (1, _, _) -> <:expr> | ((2|3|4|5|6|7|8), _, false) -> <:expr> | ((2|3|4|5|6|7|8), _, true) -> <:expr> | (i, P.ConstantEndian BigEndian, false) when i <= 31 -> <:expr> | (i, P.ConstantEndian BigEndian, true) when i <= 31 -> <:expr> | (i, P.ConstantEndian LittleEndian, false) when i <= 31 -> <:expr> | (i, P.ConstantEndian LittleEndian, true) when i <= 31 -> <:expr> | (i, P.ConstantEndian NativeEndian, false) when i <= 31 -> <:expr> | (i, P.ConstantEndian NativeEndian, true) when i <= 31 -> <:expr> | (i, P.EndianExpr expr, false) when i <= 31 -> <:expr> | (i, P.EndianExpr expr, true) when i <= 31 -> <:expr> | (32, P.ConstantEndian BigEndian, false) -> <:expr> | (32, P.ConstantEndian BigEndian, true) -> <:expr> | (32, P.ConstantEndian LittleEndian, false) -> <:expr> | (32, P.ConstantEndian LittleEndian, true) -> <:expr> | (32, P.ConstantEndian NativeEndian, false) -> <:expr> | (32, P.ConstantEndian NativeEndian, true) -> <:expr> | (32, P.EndianExpr expr, false) -> <:expr> | (32, P.EndianExpr expr, true) -> <:expr> | (_, P.ConstantEndian BigEndian, false) -> <:expr> | (_, P.ConstantEndian BigEndian, true) -> <:expr> | (_, P.ConstantEndian LittleEndian, false) -> <:expr> | (_, P.ConstantEndian LittleEndian, true) -> <:expr> | (_, P.ConstantEndian NativeEndian, false) -> <:expr> | (_, P.ConstantEndian NativeEndian, true) -> <:expr> | (_, P.EndianExpr expr, false) -> <:expr> | (_, P.EndianExpr expr, true) -> <:expr> in let int_extract = function | (P.ConstantEndian BigEndian, false) -> <:expr> | (P.ConstantEndian BigEndian, true) -> <:expr> | (P.ConstantEndian LittleEndian, false) -> <:expr> | (P.ConstantEndian LittleEndian, true) -> <:expr> | (P.ConstantEndian NativeEndian, false) -> <:expr> | (P.ConstantEndian NativeEndian, true) -> <:expr> | (P.EndianExpr expr, false) -> <:expr> | (P.EndianExpr expr, true) -> <:expr> in let expr = match t, flen_is_const with (* Common case: int field, constant flen *) | P.Int, Some i when i > 0 && i <= 64 -> let extract_fn = int_extract_const (i,endian,signed) in let v = gensym "val" in <:expr< if $lid:len$ >= $`int:i$ then ( let $lid:v$, $lid:off$, $lid:len$ = $extract_fn$ $lid:data$ $lid:off$ $lid:len$ $`int:i$ in match $lid:v$ with $fpatt$ when true -> $inner$ | _ -> () ) >> | P.Int, Some _ -> Loc.raise _loc (Failure "length of int field must be [1..64]") (* Int field, non-const flen. We have to test the range of * the field at runtime. If outside the range it's a no-match * (not an error). *) | P.Int, None -> let extract_fn = int_extract (endian,signed) in let v = gensym "val" in <:expr< if $flen$ >= 1 && $flen$ <= 64 && $flen$ <= $lid:len$ then ( let $lid:v$, $lid:off$, $lid:len$ = $extract_fn$ $lid:data$ $lid:off$ $lid:len$ $flen$ in match $lid:v$ with $fpatt$ when true -> $inner$ | _ -> () ) >> (* String, constant flen > 0. *) | P.String, Some i when i > 0 && i land 7 = 0 -> let bs = gensym "bs" in <:expr< if $lid:len$ >= $`int:i$ then ( let $lid:bs$, $lid:off$, $lid:len$ = Bitmatch.extract_bitstring $lid:data$ $lid:off$ $lid:len$ $`int:i$ in match Bitmatch.string_of_bitstring $lid:bs$ with | $fpatt$ when true -> $inner$ | _ -> () ) >> (* String, constant flen = -1, means consume all the * rest of the input. *) | P.String, Some i when i = -1 -> let bs = gensym "bs" in <:expr< let $lid:bs$, $lid:off$, $lid:len$ = Bitmatch.extract_remainder $lid:data$ $lid:off$ $lid:len$ in match Bitmatch.string_of_bitstring $lid:bs$ with | $fpatt$ when true -> $inner$ | _ -> () >> | P.String, Some _ -> Loc.raise _loc (Failure "length of string must be > 0 and a multiple of 8, or the special value -1") (* String field, non-const flen. We check the flen is > 0 * and a multiple of 8 (-1 is not allowed here), at runtime. *) | P.String, None -> let bs = gensym "bs" in <:expr< if $flen$ >= 0 && $flen$ <= $lid:len$ && $flen$ land 7 = 0 then ( let $lid:bs$, $lid:off$, $lid:len$ = Bitmatch.extract_bitstring $lid:data$ $lid:off$ $lid:len$ $flen$ in match Bitmatch.string_of_bitstring $lid:bs$ with | $fpatt$ when true -> $inner$ | _ -> () ) >> (* Bitstring, constant flen >= 0. * At the moment all we can do is assign the bitstring to an * identifier. *) | P.Bitstring, Some i when i >= 0 -> let ident = match fpatt with | <:patt< $lid:ident$ >> -> ident | <:patt< _ >> -> "_" | _ -> Loc.raise _loc (Failure "cannot compare a bitstring to a constant") in <:expr< if $lid:len$ >= $`int:i$ then ( let $lid:ident$, $lid:off$, $lid:len$ = Bitmatch.extract_bitstring $lid:data$ $lid:off$ $lid:len$ $`int:i$ in $inner$ ) >> (* Bitstring, constant flen = -1, means consume all the * rest of the input. *) | P.Bitstring, Some i when i = -1 -> let ident = match fpatt with | <:patt< $lid:ident$ >> -> ident | <:patt< _ >> -> "_" | _ -> Loc.raise _loc (Failure "cannot compare a bitstring to a constant") in <:expr< let $lid:ident$, $lid:off$, $lid:len$ = Bitmatch.extract_remainder $lid:data$ $lid:off$ $lid:len$ in $inner$ >> | P.Bitstring, Some _ -> Loc.raise _loc (Failure "length of bitstring must be >= 0 or the special value -1") (* Bitstring field, non-const flen. We check the flen is >= 0 * (-1 is not allowed here) at runtime. *) | P.Bitstring, None -> let ident = match fpatt with | <:patt< $lid:ident$ >> -> ident | <:patt< _ >> -> "_" | _ -> Loc.raise _loc (Failure "cannot compare a bitstring to a constant") in <:expr< if $flen$ >= 0 && $flen$ <= $lid:len$ then ( let $lid:ident$, $lid:off$, $lid:len$ = Bitmatch.extract_bitstring $lid:data$ $lid:off$ $lid:len$ $flen$ in $inner$ ) >> in (* Computed offset: only offsets forward are supported. * * We try hard to optimize this based on what we know. Are * we at a predictable offset now? (Look at the outer 'fields' * list and see if they all have constant field length starting * at some constant offset). Is this offset constant? * * Based on this we can do a lot of the computation at * compile time, or defer it to runtime only if necessary. * * In all cases, the off and len fields get updated. *) let expr = match offset with | None -> expr (* common case: there was no offset expression *) | Some offset_expr -> (* This will be [Some i] if offset is a constant expression * or [None] if it's a non-constant. *) let requested_offset = expr_is_constant offset_expr in (* This will be [Some i] if our current offset is known * at compile time, or [None] if we can't determine it. *) let current_offset = let has_constant_offset field = match P.get_offset field with | None -> false | Some expr -> match expr_is_constant expr with | None -> false | Some i -> true in let get_constant_offset field = match P.get_offset field with | None -> assert false | Some expr -> match expr_is_constant expr with | None -> assert false | Some i -> i in let has_constant_len field = match expr_is_constant (P.get_length field) with | None -> false | Some i when i > 0 -> true | Some _ -> false in let get_constant_len field = match expr_is_constant (P.get_length field) with | None -> assert false | Some i when i > 0 -> i | Some _ -> assert false in let rec loop = function (* first field has constant offset 0 *) | [] -> Some 0 (* field with constant offset & length *) | field :: _ when has_constant_offset field && has_constant_len field -> Some (get_constant_offset field + get_constant_len field) (* field with no offset & constant length *) | field :: fields when P.get_offset field = None && has_constant_len field -> (match loop fields with | None -> None | Some offset -> Some (offset + get_constant_len field)) (* else, can't work out the offset *) | _ -> None in loop fields in (* Look at the current offset and requested offset cases and * determine what code to generate. *) match current_offset, requested_offset with (* This is the good case: both the current offset and * the requested offset are constant, so we can remove * almost all the runtime checks. *) | Some current_offset, Some requested_offset -> let move = requested_offset - current_offset in if move < 0 then Loc.raise _loc (Failure (sprintf "requested offset is less than the current offset (%d < %d)" requested_offset current_offset)); (* Add some code to move the offset and length by a * constant amount, and a runtime test that len >= 0 * (XXX possibly the runtime test is unnecessary?) *) <:expr< let $lid:off$ = $lid:off$ + $`int:move$ in let $lid:len$ = $lid:len$ - $`int:move$ in if $lid:len$ >= 0 then $expr$ >> (* In any other case, we need to use runtime checks. * * XXX It's not clear if a backwards move detected at runtime * is merely a match failure, or a runtime error. At the * moment it's just a match failure since bitmatch generally * doesn't raise runtime errors. *) | _ -> let move = gensym "move" in <:expr< let $lid:move$ = $offset_expr$ - $lid:off$ in if $lid:move$ >= 0 then ( let $lid:off$ = $lid:off$ + $lid:move$ in let $lid:len$ = $lid:len$ - $lid:move$ in if $lid:len$ >= 0 then $expr$ ) >> in (* end of computed offset code *) (* Emit extra debugging code. *) let expr = if not debug then expr else ( let field = P.string_of_field field in <:expr< if !Bitmatch.debug then ( Printf.eprintf "PA_BITMATCH: TEST:\n"; Printf.eprintf " %s\n" $str:field$; Printf.eprintf " off %d len %d\n%!" $lid:off$ $lid:len$; (*Bitmatch.hexdump_bitstring stderr ($lid:data$,$lid:off$,$lid:len$);*) ); $expr$ >> ) in output_field_extraction expr fields in (* Convert each case in the match. *) let cases = List.map ( fun (fields, bind, whenclause, code) -> let inner = <:expr< $lid:result$ := Some ($code$); raise Exit >> in let inner = match whenclause with | Some whenclause -> <:expr< if $whenclause$ then $inner$ >> | None -> inner in let inner = match bind with | Some name -> <:expr< let $lid:name$ = ($lid:data$, $lid:off$, $lid:len$) in $inner$ >> | None -> inner in output_field_extraction inner (List.rev fields) ) cases in (* Join them into a single expression. * * Don't do it with a normal fold_right because that leaves * 'raise Exit; ()' at the end which causes a compiler warning. * Hence a bit of complexity here. * * Note that the number of cases is always >= 1 so List.hd is safe. *) let cases = List.rev cases in let cases = List.fold_left (fun base case -> <:expr< $case$ ; $base$ >>) (List.hd cases) (List.tl cases) in (* The final code just wraps the list of cases in a * try/with construct so that each case is tried in * turn until one case matches (that case sets 'result' * and raises 'Exit' to leave the whole statement). * If result isn't set by the end then we will raise * Match_failure with the location of the bitmatch * statement in the original code. *) let loc_fname = Loc.file_name _loc in let loc_line = string_of_int (Loc.start_line _loc) in let loc_char = string_of_int (Loc.start_off _loc - Loc.start_bol _loc) in <:expr< let ($lid:data$, $lid:off$, $lid:len$) = $bs$ in let $lid:result$ = ref None in (try $cases$ with Exit -> ()); match ! $lid:result$ with | Some x -> x | None -> raise (Match_failure ($str:loc_fname$, $int:loc_line$, $int:loc_char$)) >> (* Add a named pattern. *) let add_named_pattern _loc name pattern = Hashtbl.add pattern_hash name pattern (* Expand a named pattern from the pattern_hash. *) let expand_named_pattern _loc name = try Hashtbl.find pattern_hash name with Not_found -> Loc.raise _loc (Failure (sprintf "named pattern not found: %s" name)) (* Add named patterns from a file. See the documentation on the * directory search path in bitmatch_persistent.mli *) let load_patterns_from_file _loc filename = let chan = if Filename.is_relative filename && Filename.is_implicit filename then ( (* Try current directory. *) try open_in filename with _ -> (* Try OCaml library directory. *) try open_in (Filename.concat Bitmatch_config.ocamllibdir filename) with exn -> Loc.raise _loc exn ) else ( try open_in filename with exn -> Loc.raise _loc exn ) in let names = ref [] in (try let rec loop () = let name = P.named_from_channel chan in names := name :: !names in loop () with End_of_file -> () ); close_in chan; let names = List.rev !names in List.iter ( function | name, P.Pattern patt -> add_named_pattern _loc name patt | _, P.Constructor _ -> () (* just ignore these for now *) ) names EXTEND Gram GLOBAL: expr str_item; (* Qualifiers are a list of identifiers ("string", "bigendian", etc.) * followed by an optional expression (used in certain cases). Note * that we are careful not to declare any explicit reserved words. *) qualifiers: [ [ LIST0 [ q = LIDENT; e = OPT [ "("; e = expr; ")" -> e ] -> (q, e) ] SEP "," ] ]; (* Field used in the bitmatch operator (a pattern). This can actually * return multiple fields, in the case where the 'field' is a named * persitent pattern. *) patt_field: [ [ fpatt = patt; ":"; len = expr LEVEL "top"; qs = OPT [ ":"; qs = qualifiers -> qs ] -> let field = P.create_pattern_field _loc in let field = P.set_patt field fpatt in let field = P.set_length field len in [parse_field _loc field qs] (* Normal, single field. *) | ":"; name = LIDENT -> expand_named_pattern _loc name (* Named -> list of fields. *) ] ]; (* Case inside bitmatch operator. *) patt_fields: [ [ "{"; fields = LIST0 patt_field SEP ";"; "}" -> List.concat fields ] ]; patt_case: [ [ fields = patt_fields; bind = OPT [ "as"; name = LIDENT -> name ]; whenclause = OPT [ "when"; e = expr -> e ]; "->"; code = expr -> (fields, bind, whenclause, code) ] ]; (* Field used in the BITSTRING constructor (an expression). *) constr_field: [ [ fexpr = expr LEVEL "top"; ":"; len = expr LEVEL "top"; qs = OPT [ ":"; qs = qualifiers -> qs ] -> let field = P.create_constructor_field _loc in let field = P.set_expr field fexpr in let field = P.set_length field len in parse_field _loc field qs ] ]; constr_fields: [ [ "{"; fields = LIST0 constr_field SEP ";"; "}" -> fields ] ]; (* 'bitmatch' expressions. *) expr: LEVEL ";" [ [ "bitmatch"; bs = expr; "with"; OPT "|"; cases = LIST1 patt_case SEP "|" -> output_bitmatch _loc bs cases ] (* Constructor. *) | [ "BITSTRING"; fields = constr_fields -> output_constructor _loc fields ] ]; (* Named persistent patterns. * * NB: Currently only allowed at the top level. We can probably lift * this restriction later if necessary. We only deal with patterns * at the moment, not constructors, but the infrastructure to do * constructors is in place. *) str_item: LEVEL "top" [ [ "let"; "bitmatch"; name = LIDENT; "="; fields = patt_fields -> add_named_pattern _loc name fields; (* The statement disappears, but we still need a str_item so ... *) <:str_item< >> | "open"; "bitmatch"; filename = STRING -> load_patterns_from_file _loc filename; <:str_item< >> ] ]; END