(* Bitmatch library. * Copyright (C) 2008 Red Hat Inc., Richard W.M. Jones * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * $Id: bitmatch.ml,v 1.14 2008-05-12 20:32:55 rjones Exp $ *) open Printf (* Enable runtime debug messages. Must also have been enabled * in pa_bitmatch.ml. *) let debug = ref false (* Exceptions. *) exception Construct_failure of string * string * int * int (* A bitstring is simply the data itself (as a string), and the * bitoffset and the bitlength within the string. Note offset/length * are counted in bits, not bytes. *) type bitstring = string * int * int (* Functions to create and load bitstrings. *) let empty_bitstring = "", 0, 0 let make_bitstring len c = String.make ((len+7) lsr 3) c, 0, len let create_bitstring len = make_bitstring len '\000' let bitstring_of_string str = str, 0, String.length str lsl 3 let bitstring_of_chan chan = let tmpsize = 16384 in let buf = Buffer.create tmpsize in let tmp = String.create tmpsize in let n = ref 0 in while n := input chan tmp 0 tmpsize; !n > 0 do Buffer.add_substring buf tmp 0 !n; done; Buffer.contents buf, 0, Buffer.length buf lsl 3 let bitstring_of_chan_max chan max = let tmpsize = 16384 in let buf = Buffer.create tmpsize in let tmp = String.create tmpsize in let len = ref 0 in let rec loop () = if !len < max then ( let r = min tmpsize (max - !len) in let n = input chan tmp 0 r in if n > 0 then ( Buffer.add_substring buf tmp 0 n; len := !len + n; loop () ) ) in loop (); Buffer.contents buf, 0, !len lsl 3 let bitstring_of_file_descr fd = let tmpsize = 16384 in let buf = Buffer.create tmpsize in let tmp = String.create tmpsize in let n = ref 0 in while n := Unix.read fd tmp 0 tmpsize; !n > 0 do Buffer.add_substring buf tmp 0 !n; done; Buffer.contents buf, 0, Buffer.length buf lsl 3 let bitstring_of_file_descr_max fd max = let tmpsize = 16384 in let buf = Buffer.create tmpsize in let tmp = String.create tmpsize in let len = ref 0 in let rec loop () = if !len < max then ( let r = min tmpsize (max - !len) in let n = Unix.read fd tmp 0 r in if n > 0 then ( Buffer.add_substring buf tmp 0 n; len := !len + n; loop () ) ) in loop (); Buffer.contents buf, 0, !len lsl 3 let bitstring_of_file fname = let chan = open_in_bin fname in let bs = bitstring_of_chan chan in close_in chan; bs let bitstring_length (_, _, len) = len (*----------------------------------------------------------------------*) (* Bitwise functions. * * We try to isolate all bitwise functions within these modules. *) module I = struct (* Bitwise operations on ints. Note that we assume int <= 31 bits. *) let (<<) = (lsl) let (>>) = (lsr) external to_int : int -> int = "%identity" let zero = 0 let one = 1 let minus_one = -1 let ff = 0xff (* Create a mask so many bits wide. *) let mask bits = if bits < 30 then pred (one << bits) else if bits = 30 then max_int else if bits = 31 then minus_one else invalid_arg "Bitmatch.I.mask" (* Byte swap an int of a given size. *) let byteswap v bits = if bits <= 8 then v else if bits <= 16 then ( let shift = bits-8 in let v1 = v >> shift in let v2 = (v land (mask shift)) << 8 in v2 lor v1 ) else if bits <= 24 then ( let shift = bits - 16 in let v1 = v >> (8+shift) in let v2 = ((v >> shift) land ff) << 8 in let v3 = (v land (mask shift)) << 16 in v3 lor v2 lor v1 ) else ( let shift = bits - 24 in let v1 = v >> (16+shift) in let v2 = ((v >> (8+shift)) land ff) << 8 in let v3 = ((v >> shift) land ff) << 16 in let v4 = (v land (mask shift)) << 24 in v4 lor v3 lor v2 lor v1 ) (* Check a value is in range 0 .. 2^bits-1. *) let range_unsigned v bits = let mask = lnot (mask bits) in (v land mask) = zero (* Call function g on the top bits, then f on each full byte * (big endian - so start at top). *) let rec map_bytes_be g f v bits = if bits >= 8 then ( map_bytes_be g f (v >> 8) (bits-8); let lsb = v land ff in f (to_int lsb) ) else if bits > 0 then ( let lsb = v land (mask bits) in g (to_int lsb) bits ) end module I32 = struct (* Bitwise operations on int32s. Note we try to keep it as similar * as possible to the I module above, to make it easier to track * down bugs. *) let (<<) = Int32.shift_left let (>>) = Int32.shift_right_logical let (land) = Int32.logand let (lor) = Int32.logor let lnot = Int32.lognot let pred = Int32.pred let max_int = Int32.max_int let to_int = Int32.to_int let zero = Int32.zero let one = Int32.one let minus_one = Int32.minus_one let ff = 0xff_l (* Create a mask so many bits wide. *) let mask bits = if bits < 31 then pred (one << bits) else if bits = 31 then max_int else if bits = 32 then minus_one else invalid_arg "Bitmatch.I32.mask" (* Byte swap an int of a given size. *) let byteswap v bits = if bits <= 8 then v else if bits <= 16 then ( let shift = bits-8 in let v1 = v >> shift in let v2 = (v land (mask shift)) << 8 in v2 lor v1 ) else if bits <= 24 then ( let shift = bits - 16 in let v1 = v >> (8+shift) in let v2 = ((v >> shift) land ff) << 8 in let v3 = (v land (mask shift)) << 16 in v3 lor v2 lor v1 ) else ( let shift = bits - 24 in let v1 = v >> (16+shift) in let v2 = ((v >> (8+shift)) land ff) << 8 in let v3 = ((v >> shift) land ff) << 16 in let v4 = (v land (mask shift)) << 24 in v4 lor v3 lor v2 lor v1 ) (* Check a value is in range 0 .. 2^bits-1. *) let range_unsigned v bits = let mask = lnot (mask bits) in (v land mask) = zero (* Call function g on the top bits, then f on each full byte * (big endian - so start at top). *) let rec map_bytes_be g f v bits = if bits >= 8 then ( map_bytes_be g f (v >> 8) (bits-8); let lsb = v land ff in f (to_int lsb) ) else if bits > 0 then ( let lsb = v land (mask bits) in g (to_int lsb) bits ) end module I64 = struct (* Bitwise operations on int64s. Note we try to keep it as similar * as possible to the I/I32 modules above, to make it easier to track * down bugs. *) let (<<) = Int64.shift_left let (>>) = Int64.shift_right_logical let (land) = Int64.logand let (lor) = Int64.logor let lnot = Int64.lognot let pred = Int64.pred let max_int = Int64.max_int let to_int = Int64.to_int let zero = Int64.zero let one = Int64.one let minus_one = Int64.minus_one let ff = 0xff_L (* Create a mask so many bits wide. *) let mask bits = if bits < 63 then pred (one << bits) else if bits = 63 then max_int else if bits = 64 then minus_one else invalid_arg "Bitmatch.I64.mask" (* Byte swap an int of a given size. *) (* let byteswap v bits = *) (* Check a value is in range 0 .. 2^bits-1. *) let range_unsigned v bits = let mask = lnot (mask bits) in (v land mask) = zero (* Call function g on the top bits, then f on each full byte * (big endian - so start at top). *) let rec map_bytes_be g f v bits = if bits >= 8 then ( map_bytes_be g f (v >> 8) (bits-8); let lsb = v land ff in f (to_int lsb) ) else if bits > 0 then ( let lsb = v land (mask bits) in g (to_int lsb) bits ) end (*----------------------------------------------------------------------*) (* Extraction functions. * * NB: internal functions, called from the generated macros, and * the parameters should have been checked for sanity already). *) (* Bitstrings. *) let extract_bitstring data off len flen = (data, off, flen), off+flen, len-flen let extract_remainder data off len = (data, off, len), off+len, 0 (* Extract and convert to numeric. A single bit is returned as * a boolean. There are no endianness or signedness considerations. *) let extract_bit data off len _ = (* final param is always 1 *) let byteoff = off lsr 3 in let bitmask = 1 lsl (7 - (off land 7)) in let b = Char.code data.[byteoff] land bitmask <> 0 in b, off+1, len-1 (* Returns 8 bit unsigned aligned bytes from the string. * If the string ends then this returns 0's. *) let _get_byte data byteoff strlen = if strlen > byteoff then Char.code data.[byteoff] else 0 let _get_byte32 data byteoff strlen = if strlen > byteoff then Int32.of_int (Char.code data.[byteoff]) else 0l let _get_byte64 data byteoff strlen = if strlen > byteoff then Int64.of_int (Char.code data.[byteoff]) else 0L (* Extract [2..8] bits. Because the result fits into a single * byte we don't have to worry about endianness, only signedness. *) let extract_char_unsigned data off len flen = let byteoff = off lsr 3 in (* Optimize the common (byte-aligned) case. *) if off land 7 = 0 then ( let byte = Char.code data.[byteoff] in byte lsr (8 - flen), off+flen, len-flen ) else ( (* Extract the 16 bits at byteoff and byteoff+1 (note that the * second byte might not exist in the original string). *) let strlen = String.length data in let word = (_get_byte data byteoff strlen lsl 8) + _get_byte data (byteoff+1) strlen in (* Mask off the top bits. *) let bitmask = (1 lsl (16 - (off land 7))) - 1 in let word = word land bitmask in (* Shift right to get rid of the bottom bits. *) let shift = 16 - ((off land 7) + flen) in let word = word lsr shift in word, off+flen, len-flen ) (* Extract [9..31] bits. We have to consider endianness and signedness. *) let extract_int_be_unsigned data off len flen = let byteoff = off lsr 3 in let strlen = String.length data in let word = (* Optimize the common (byte-aligned) case. *) if off land 7 = 0 then ( let word = (_get_byte data byteoff strlen lsl 23) + (_get_byte data (byteoff+1) strlen lsl 15) + (_get_byte data (byteoff+2) strlen lsl 7) + (_get_byte data (byteoff+3) strlen lsr 1) in word lsr (31 - flen) ) else if flen <= 24 then ( (* Extract the 31 bits at byteoff .. byteoff+3. *) let word = (_get_byte data byteoff strlen lsl 23) + (_get_byte data (byteoff+1) strlen lsl 15) + (_get_byte data (byteoff+2) strlen lsl 7) + (_get_byte data (byteoff+3) strlen lsr 1) in (* Mask off the top bits. *) let bitmask = (1 lsl (31 - (off land 7))) - 1 in let word = word land bitmask in (* Shift right to get rid of the bottom bits. *) let shift = 31 - ((off land 7) + flen) in word lsr shift ) else ( (* Extract the next 31 bits, slow method. *) let word = let c0, off, len = extract_char_unsigned data off len 8 in let c1, off, len = extract_char_unsigned data off len 8 in let c2, off, len = extract_char_unsigned data off len 8 in let c3, off, len = extract_char_unsigned data off len 7 in (c0 lsl 23) + (c1 lsl 15) + (c2 lsl 7) + c3 in word lsr (31 - flen) ) in word, off+flen, len-flen let extract_int_le_unsigned data off len flen = let v, off, len = extract_int_be_unsigned data off len flen in let v = I.byteswap v flen in v, off, len let _make_int32_be c0 c1 c2 c3 = Int32.logor (Int32.logor (Int32.logor (Int32.shift_left c0 24) (Int32.shift_left c1 16)) (Int32.shift_left c2 8)) c3 let _make_int32_le c0 c1 c2 c3 = Int32.logor (Int32.logor (Int32.logor (Int32.shift_left c3 24) (Int32.shift_left c2 16)) (Int32.shift_left c1 8)) c0 (* Extract exactly 32 bits. We have to consider endianness and signedness. *) let extract_int32_be_unsigned data off len flen = let byteoff = off lsr 3 in let strlen = String.length data in let word = (* Optimize the common (byte-aligned) case. *) if off land 7 = 0 then ( let word = let c0 = _get_byte32 data byteoff strlen in let c1 = _get_byte32 data (byteoff+1) strlen in let c2 = _get_byte32 data (byteoff+2) strlen in let c3 = _get_byte32 data (byteoff+3) strlen in _make_int32_be c0 c1 c2 c3 in Int32.shift_right_logical word (32 - flen) ) else ( (* Extract the next 32 bits, slow method. *) let word = let c0, off, len = extract_char_unsigned data off len 8 in let c1, off, len = extract_char_unsigned data off len 8 in let c2, off, len = extract_char_unsigned data off len 8 in let c3, _, _ = extract_char_unsigned data off len 8 in let c0 = Int32.of_int c0 in let c1 = Int32.of_int c1 in let c2 = Int32.of_int c2 in let c3 = Int32.of_int c3 in _make_int32_be c0 c1 c2 c3 in Int32.shift_right_logical word (32 - flen) ) in word, off+flen, len-flen let extract_int32_le_unsigned data off len flen = let v, off, len = extract_int32_be_unsigned data off len flen in let v = I32.byteswap v flen in v, off, len let _make_int64_be c0 c1 c2 c3 c4 c5 c6 c7 = Int64.logor (Int64.logor (Int64.logor (Int64.logor (Int64.logor (Int64.logor (Int64.logor (Int64.shift_left c0 56) (Int64.shift_left c1 48)) (Int64.shift_left c2 40)) (Int64.shift_left c3 32)) (Int64.shift_left c4 24)) (Int64.shift_left c5 16)) (Int64.shift_left c6 8)) c7 let _make_int64_le c0 c1 c2 c3 c4 c5 c6 c7 = _make_int64_be c7 c6 c5 c4 c3 c2 c1 c0 (* Extract [1..64] bits. We have to consider endianness and signedness. *) let extract_int64_be_unsigned data off len flen = let byteoff = off lsr 3 in let strlen = String.length data in let word = (* Optimize the common (byte-aligned) case. *) if off land 7 = 0 then ( let word = let c0 = _get_byte64 data byteoff strlen in let c1 = _get_byte64 data (byteoff+1) strlen in let c2 = _get_byte64 data (byteoff+2) strlen in let c3 = _get_byte64 data (byteoff+3) strlen in let c4 = _get_byte64 data (byteoff+4) strlen in let c5 = _get_byte64 data (byteoff+5) strlen in let c6 = _get_byte64 data (byteoff+6) strlen in let c7 = _get_byte64 data (byteoff+7) strlen in _make_int64_be c0 c1 c2 c3 c4 c5 c6 c7 in Int64.shift_right_logical word (64 - flen) ) else ( (* Extract the next 64 bits, slow method. *) let word = let c0, off, len = extract_char_unsigned data off len 8 in let c1, off, len = extract_char_unsigned data off len 8 in let c2, off, len = extract_char_unsigned data off len 8 in let c3, off, len = extract_char_unsigned data off len 8 in let c4, off, len = extract_char_unsigned data off len 8 in let c5, off, len = extract_char_unsigned data off len 8 in let c6, off, len = extract_char_unsigned data off len 8 in let c7, _, _ = extract_char_unsigned data off len 8 in let c0 = Int64.of_int c0 in let c1 = Int64.of_int c1 in let c2 = Int64.of_int c2 in let c3 = Int64.of_int c3 in let c4 = Int64.of_int c4 in let c5 = Int64.of_int c5 in let c6 = Int64.of_int c6 in let c7 = Int64.of_int c7 in _make_int64_be c0 c1 c2 c3 c4 c5 c6 c7 in Int64.shift_right_logical word (64 - flen) ) in word, off+flen, len-flen let extract_int64_le_unsigned data off len flen = let byteoff = off lsr 3 in let strlen = String.length data in let word = (* Optimize the common (byte-aligned) case. *) if off land 7 = 0 then ( let word = let c0 = _get_byte64 data byteoff strlen in let c1 = _get_byte64 data (byteoff+1) strlen in let c2 = _get_byte64 data (byteoff+2) strlen in let c3 = _get_byte64 data (byteoff+3) strlen in let c4 = _get_byte64 data (byteoff+4) strlen in let c5 = _get_byte64 data (byteoff+5) strlen in let c6 = _get_byte64 data (byteoff+6) strlen in let c7 = _get_byte64 data (byteoff+7) strlen in _make_int64_le c0 c1 c2 c3 c4 c5 c6 c7 in Int64.logand word (I64.mask flen) ) else ( (* Extract the next 64 bits, slow method. *) let word = let c0, off, len = extract_char_unsigned data off len 8 in let c1, off, len = extract_char_unsigned data off len 8 in let c2, off, len = extract_char_unsigned data off len 8 in let c3, off, len = extract_char_unsigned data off len 8 in let c4, off, len = extract_char_unsigned data off len 8 in let c5, off, len = extract_char_unsigned data off len 8 in let c6, off, len = extract_char_unsigned data off len 8 in let c7, _, _ = extract_char_unsigned data off len 8 in let c0 = Int64.of_int c0 in let c1 = Int64.of_int c1 in let c2 = Int64.of_int c2 in let c3 = Int64.of_int c3 in let c4 = Int64.of_int c4 in let c5 = Int64.of_int c5 in let c6 = Int64.of_int c6 in let c7 = Int64.of_int c7 in _make_int64_le c0 c1 c2 c3 c4 c5 c6 c7 in Int64.logand word (I64.mask flen) ) in word, off+flen, len-flen (*----------------------------------------------------------------------*) (* Constructor functions. *) module Buffer = struct type t = { buf : Buffer.t; mutable len : int; (* Length in bits. *) (* Last byte in the buffer (if len is not aligned). We store * it outside the buffer because buffers aren't mutable. *) mutable last : int; } let create () = (* XXX We have almost enough information in the generator to * choose a good initial size. *) { buf = Buffer.create 128; len = 0; last = 0 } let contents { buf = buf; len = len; last = last } = let data = if len land 7 = 0 then Buffer.contents buf else Buffer.contents buf ^ (String.make 1 (Char.chr last)) in data, 0, len (* Add exactly 8 bits. *) let add_byte ({ buf = buf; len = len; last = last } as t) byte = if byte < 0 || byte > 255 then invalid_arg "Bitmatch.Buffer.add_byte"; let shift = len land 7 in if shift = 0 then (* Target buffer is byte-aligned. *) Buffer.add_char buf (Char.chr byte) else ( (* Target buffer is unaligned. 'last' is meaningful. *) let first = byte lsr shift in let second = (byte lsl (8 - shift)) land 0xff in Buffer.add_char buf (Char.chr (last lor first)); t.last <- second ); t.len <- t.len + 8 (* Add exactly 1 bit. *) let add_bit ({ buf = buf; len = len; last = last } as t) bit = let shift = 7 - (len land 7) in if shift > 0 then (* Somewhere in the middle of 'last'. *) t.last <- last lor ((if bit then 1 else 0) lsl shift) else ( (* Just a single spare bit in 'last'. *) let last = last lor if bit then 1 else 0 in Buffer.add_char buf (Char.chr last); t.last <- 0 ); t.len <- len + 1 (* Add a small number of bits (definitely < 8). This uses a loop * to call add_bit so it's slow. *) let _add_bits t c slen = if slen < 1 || slen >= 8 then invalid_arg "Bitmatch.Buffer._add_bits"; for i = slen-1 downto 0 do let bit = c land (1 lsl i) <> 0 in add_bit t bit done let add_bits ({ buf = buf; len = len } as t) str slen = if slen > 0 then ( if len land 7 = 0 then ( if slen land 7 = 0 then (* Common case - everything is byte-aligned. *) Buffer.add_substring buf str 0 (slen lsr 3) else ( (* Target buffer is aligned. Copy whole bytes then leave the * remaining bits in last. *) let slenbytes = slen lsr 3 in if slenbytes > 0 then Buffer.add_substring buf str 0 slenbytes; t.last <- Char.code str.[slenbytes] lsl (8 - (slen land 7)) ); t.len <- len + slen ) else ( (* Target buffer is unaligned. Copy whole bytes using * add_byte which knows how to deal with an unaligned * target buffer, then call _add_bits for the remaining < 8 bits. * * XXX This is going to be dog-slow. *) let slenbytes = slen lsr 3 in for i = 0 to slenbytes-1 do let byte = Char.code str.[i] in add_byte t byte done; _add_bits t (Char.code str.[slenbytes]) (slen - (slenbytes lsl 3)) ); ) end (* Construct a single bit. *) let construct_bit buf b _ _ = Buffer.add_bit buf b (* Construct a field, flen = [2..8]. *) let construct_char_unsigned buf v flen exn = let max_val = 1 lsl flen in if v < 0 || v >= max_val then raise exn; if flen = 8 then Buffer.add_byte buf v else Buffer._add_bits buf v flen (* Construct a field of up to 31 bits. *) let construct_int_be_unsigned buf v flen exn = (* Check value is within range. *) if not (I.range_unsigned v flen) then raise exn; (* Add the bytes. *) I.map_bytes_be (Buffer._add_bits buf) (Buffer.add_byte buf) v flen (* Construct a field of exactly 32 bits. *) let construct_int32_be_unsigned buf v flen _ = Buffer.add_byte buf (Int32.to_int (Int32.shift_right_logical v 24)); Buffer.add_byte buf (Int32.to_int ((Int32.logand (Int32.shift_right_logical v 16) 0xff_l))); Buffer.add_byte buf (Int32.to_int ((Int32.logand (Int32.shift_right_logical v 8) 0xff_l))); Buffer.add_byte buf (Int32.to_int (Int32.logand v 0xff_l)) (* Construct a field of up to 64 bits. *) let construct_int64_be_unsigned buf v flen exn = (* Check value is within range. *) if not (I64.range_unsigned v flen) then raise exn; (* Add the bytes. *) I64.map_bytes_be (Buffer._add_bits buf) (Buffer.add_byte buf) v flen (* Construct from a string of bytes, exact multiple of 8 bits * in length of course. *) let construct_string buf str = let len = String.length str in Buffer.add_bits buf str (len lsl 3) (*----------------------------------------------------------------------*) (* Extract a string from a bitstring. *) let string_of_bitstring (data, off, len) = if off land 7 = 0 && len land 7 = 0 then (* Easy case: everything is byte-aligned. *) String.sub data (off lsr 3) (len lsr 3) else ( (* Bit-twiddling case. *) let strlen = (len + 7) lsr 3 in let str = String.make strlen '\000' in let rec loop data off len i = if len >= 8 then ( let c, off, len = extract_char_unsigned data off len 8 in str.[i] <- Char.chr c; loop data off len (i+1) ) else if len > 0 then ( let c, off, len = extract_char_unsigned data off len len in str.[i] <- Char.chr c ) in loop data off len 0; str ) (*----------------------------------------------------------------------*) (* Display functions. *) let isprint c = let c = Char.code c in c >= 32 && c < 127 let hexdump_bitstring chan (data, off, len) = let count = ref 0 in let off = ref off in let len = ref len in let linelen = ref 0 in let linechars = String.make 16 ' ' in fprintf chan "00000000 "; while !len > 0 do let bits = min !len 8 in let byte, off', len' = extract_char_unsigned data !off !len bits in off := off'; len := len'; let byte = byte lsl (8-bits) in fprintf chan "%02x " byte; incr count; linechars.[!linelen] <- (let c = Char.chr byte in if isprint c then c else '.'); incr linelen; if !linelen = 8 then fprintf chan " "; if !linelen = 16 then ( fprintf chan " |%s|\n%08x " linechars !count; linelen := 0; for i = 0 to 15 do linechars.[i] <- ' ' done ) done; if !linelen > 0 then ( let skip = (16 - !linelen) * 3 + if !linelen < 8 then 1 else 0 in for i = 0 to skip-1 do fprintf chan " " done; fprintf chan " |%s|\n%!" linechars ) else fprintf chan "\n%!"